51 research outputs found

    MiR-182 Is Upregulated in Prostate Cancer and Contributes to Tumor Progression by Targeting MITF

    Get PDF
    Altered expression of microRNA-182-5p (miR-182) has been consistently linked with many cancers, but its specific role in prostate cancer remains unclear. In particular, its contribution to epithelial–to–mesenchymal transition (EMT) in this setting has not been well studied. Therefore, this paper profiles the expression of miR-182 in prostate cancer and investigates how it may contribute to progression of this disease. In vitro experiments on prostate cancer cell lines and in silico analyses of The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) datasets were performed. PCR revealed miR-182 expression was significantly increased in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of TCGA PRAD data similarly showed upregulation of miR-182 was significantly associated with prostate cancer and clinical markers of disease progression. Functional enrichment analysis confirmed a significant association of miR-182 and its target genes with EMT. The EMT-linked gene MITF (melanocyte inducing transcription factor) was subsequently shown to be a novel target of miR-182 in prostate cancer cells. Further TCGA analysis suggested miR-182 expression can be an indicator of patient outcomes and disease progression following therapy. In summary, this is the first study to report that miR-182 over-expression in prostate cancer may contribute to EMT by targeting MITF expression. We propose miR-182 as a potentially useful diagnostic and prognostic biomarker for prostate cancer and other malignancies

    Targeting of AKT1 by miR-143-3p Suppresses Epithelial-to-Mesenchymal Transition in Prostate Cancer

    Get PDF
    An altered expression of miR-143-3p has been previously reported in prostate cancer where it is purported to play a tumor suppressor role. Evidence from other cancers suggests miR-143-3p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key biological process required for metastasis. However, in prostate cancer the interaction between miR-143-3p and EMT-associated mechanisms remains unclear. Therefore, this paper investigated the link between miR-143-3p and EMT in prostate cancer using in vitro and in silico analyses. PCR detected that miR-143-3p expression was significantly decreased in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) data showed a significant downregulation of miR-143-3p in prostate cancer, correlating with pathological markers of advanced disease. Functional enrichment analysis confirmed the significant association of miR-143-3p and its target genes with EMT. The EMT-linked gene AKT1 was subsequently shown to be a novel target of miR-143-3p in prostate cancer cells. The in vitro manipulation of miR-143-3p levels significantly altered the cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Further TCGA PRAD analysis suggested miR-143-3p tumor expression may be a useful predictor of disease recurrence. In summary, this is the first study to report that miR-143-3p overexpression in prostate cancer may inhibit EMT by targeting AKT1. The findings suggest miR-143-3p could be a useful diagnostic and prognostic biomarker for prostate cancer

    MiR-21 Is Induced by Hypoxia and Down-Regulates RHOB in Prostate Cancer

    Get PDF
    Tumour hypoxia is a well-established contributor to prostate cancer progression and is also known to alter the expression of several microRNAs. The over-expression of microRNA-21 (miR-21) has been consistently linked with many cancers, but its role in the hypoxic prostate tumour environment has not been well studied. In this paper, the link between hypoxia and miR-21 in prostate cancer is investigated. A bioinformatic analysis of The Cancer Genome Atlas (TCGA) prostate biopsy datasets shows the up-regulation of miR-21 is significantly associated with prostate cancer and clinical markers of disease progression. This up-regulation of miR-21 expression was shown to be caused by hypoxia in the LNCaP prostate cancer cell line in vitro and in an in vivo prostate tumour xenograft model. A functional enrichment analysis also revealed a significant association of miR-21 and its target genes with processes related to cellular hypoxia. The over-expression of miR-21 increased the migration and colony-forming ability of RWPE-1 normal prostate cells. In vitro and in silico analyses demonstrated that miR-21 down-regulates the tumour suppressor gene Ras Homolog Family Member B (RHOB) in prostate cancer. Further a TCGA analysis illustrated that miR-21 can distinguish between different patient outcomes following therapy. This study presents evidence that hypoxia is a key contributor to the over-expression of miR-21 in prostate tumours, which can subsequently promote prostate cancer progression by suppressing RHOB expression. We propose that miR-21 has good potential as a clinically useful diagnostic and prognostic biomarker of hypoxia and prostate cancer
    corecore